Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On Computing Optimal Tree Ensembles (2306.04423v2)

Published 7 Jun 2023 in cs.LG and cs.DS

Abstract: Random forests and, more generally, (decision\nobreakdash-)tree ensembles are widely used methods for classification and regression. Recent algorithmic advances allow to compute decision trees that are optimal for various measures such as their size or depth. We are not aware of such research for tree ensembles and aim to contribute to this area. Mainly, we provide two novel algorithms and corresponding lower bounds. First, we are able to carry over and substantially improve on tractability results for decision trees: We obtain an algorithm that, given a training-data set and an size bound $S \in \mathbb{R}$, computes a tree ensemble of size at most $S$ that classifies the data correctly. The algorithm runs in $(4\delta D S)S \cdot poly$-time, where $D$ the largest domain size, $\delta$ is the largest number of features in which two examples differ, $n$ the number of input examples, and $poly$ a polynomial of the input size. For decision trees, that is, ensembles of size 1, we obtain a running time of $(\delta D s)s \cdot poly$, where $s$ is the size of the tree. To obtain these algorithms, we introduce the witness-tree technique, which seems promising for practical implementations. Secondly, we show that dynamic programming, which has been applied successfully to computing decision trees, may also be viable for tree ensembles, providing an $\elln \cdot poly$-time algorithm, where $\ell$ is the number of trees. Finally, we compare the number of cuts necessary to classify training data sets for decision trees and tree ensembles, showing that ensembles may need exponentially fewer cuts for increasing number of trees.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.