Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

High-Performance Caching of Homomorphic Encryption for Cloud Databases (2306.04227v1)

Published 7 Jun 2023 in cs.CR and cs.DB

Abstract: While homomorphic encryption (HE) has garnered significant research interest in cloud-based outsourced databases due to its algebraic properties over ciphertexts, the computational overhead associated with HE has hindered its widespread adoption in production database systems. Recently, a caching technique called Radix-based additive caching of homomorphic encryption (Rache) was proposed in SIGMOD'23. The primary objective of this paper is to address the performance overhead resulting from the expensive randomization process in Rache. To achieve this, we propose a novel encryption algorithm called $ASEnc$, which replaces the computationally intensive full scan of radixes with the caching of a polynomial number of radix-powers during an offline stage. This design significantly reduces the performance impact caused by randomization. Furthermore, this paper aims to extend Rache's capabilities to support floating-point numbers. To accomplish this, we introduce a new encryption algorithm named $FSEnc$, leveraging efficient constant multiplication available in state-of-the-art fully homomorphic encryption (FHE) schemes. Notably, $FSEnc$ offers the flexibility to cache the coefficients instead of the radixes themselves, which may result in a large number of cached ciphertexts. However, we manage this efficiently by streaming the dynamically cached ciphertexts through a vector of circular buffers. We demonstrate that both encryption algorithms guarantee semantic security (IND-CPA). To validate their performance, we implement both algorithms as loadable functions in MySQL 8.0 and deploy the system prototype on a 96-core server hosted in the Chameleon Cloud. Experimental results showcase that $ASEnc$ outperforms Rache by 2.3--3.3$\times$, while $FSEnc$ surpasses the state-of-the-art floating-point FHE CKKS by 1.8--5.6$\times$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.