Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

MISGENDERED: Limits of Large Language Models in Understanding Pronouns (2306.03950v2)

Published 6 Jun 2023 in cs.CL

Abstract: Content Warning: This paper contains examples of misgendering and erasure that could be offensive and potentially triggering. Gender bias in language technologies has been widely studied, but research has mostly been restricted to a binary paradigm of gender. It is essential also to consider non-binary gender identities, as excluding them can cause further harm to an already marginalized group. In this paper, we comprehensively evaluate popular LLMs for their ability to correctly use English gender-neutral pronouns (e.g., singular they, them) and neo-pronouns (e.g., ze, xe, thon) that are used by individuals whose gender identity is not represented by binary pronouns. We introduce MISGENDERED, a framework for evaluating LLMs' ability to correctly use preferred pronouns, consisting of (i) instances declaring an individual's pronoun, followed by a sentence with a missing pronoun, and (ii) an experimental setup for evaluating masked and auto-regressive LLMs using a unified method. When prompted out-of-the-box, LLMs perform poorly at correctly predicting neo-pronouns (averaging 7.7% accuracy) and gender-neutral pronouns (averaging 34.2% accuracy). This inability to generalize results from a lack of representation of non-binary pronouns in training data and memorized associations. Few-shot adaptation with explicit examples in the prompt improves performance for neo-pronouns, but only to 64.7% even with 20 shots. We release the full dataset, code, and demo at https://tamannahossainkay.github.io/misgendered/

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com