Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

FAMO: Fast Adaptive Multitask Optimization (2306.03792v3)

Published 6 Jun 2023 in cs.LG

Abstract: One of the grand enduring goals of AI is to create generalist agents that can learn multiple different tasks from diverse data via multitask learning (MTL). However, in practice, applying gradient descent (GD) on the average loss across all tasks may yield poor multitask performance due to severe under-optimization of certain tasks. Previous approaches that manipulate task gradients for a more balanced loss decrease require storing and computing all task gradients ($\mathcal{O}(k)$ space and time where $k$ is the number of tasks), limiting their use in large-scale scenarios. In this work, we introduce Fast Adaptive Multitask Optimization FAMO, a dynamic weighting method that decreases task losses in a balanced way using $\mathcal{O}(1)$ space and time. We conduct an extensive set of experiments covering multi-task supervised and reinforcement learning problems. Our results indicate that FAMO achieves comparable or superior performance to state-of-the-art gradient manipulation techniques while offering significant improvements in space and computational efficiency. Code is available at \url{https://github.com/Cranial-XIX/FAMO}.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com