Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Streaming Speech-to-Confusion Network Speech Recognition (2306.03778v1)

Published 2 Jun 2023 in eess.AS and cs.CL

Abstract: In interactive automatic speech recognition (ASR) systems, low-latency requirements limit the amount of search space that can be explored during decoding, particularly in end-to-end neural ASR. In this paper, we present a novel streaming ASR architecture that outputs a confusion network while maintaining limited latency, as needed for interactive applications. We show that 1-best results of our model are on par with a comparable RNN-T system, while the richer hypothesis set allows second-pass rescoring to achieve 10-20\% lower word error rate on the LibriSpeech task. We also show that our model outperforms a strong RNN-T baseline on a far-field voice assistant task.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.