Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A rational conjugate gradient method for linear ill-conditioned problems (2306.03670v1)

Published 6 Jun 2023 in math.NA and cs.NA

Abstract: We consider linear ill-conditioned operator equations in a Hilbert space setting. Motivated by the aggregation method, we consider approximate solutions constructed from linear combinations of Tikhonov regularization, which amounts to finding solutions in a rational Krylov space. By mixing these with usual Krylov spaces, we consider least-squares problem in these mixed rational spaces. Applying the Arnoldi method leads to a sparse, pentadiagonal representation of the forward operator, and we introduce the Lanczos method for solving the least-squares problem by factorizing this matrix. Finally, we present an equivalent conjugate-gradient-type method that does not rely on explicit orthogonalization but uses short-term recursions and Tikhonov regularization in each second step. We illustrate the convergence and regularization properties by some numerical examples.

Summary

We haven't generated a summary for this paper yet.