Papers
Topics
Authors
Recent
2000 character limit reached

FaaSwap: SLO-Aware, GPU-Efficient Serverless Inference via Model Swapping

Published 6 Jun 2023 in cs.DC | (2306.03622v2)

Abstract: Serverless computing has become increasingly popular for machine learning inference. However, current serverless platforms lack efficient support for GPUs, limiting their ability to deliver low-latency inference. In this paper, we propose FaaSwap, a GPU-efficient serverless inference platform. FaaSwap employs a holistic approach to system and algorithm design. It maintains models in main memory and dynamically swaps them onto GPUs upon request arrivals (i.e., late binding), thereby enabling a large number of inference functions to efficiently share a node's GPUs. FaaSwap uses various techniques, including asynchronous API redirection, GPU runtime sharing, pipelined model execution, and efficient GPU memory management, to achieve the optimal performance. We also develop an interference-aware request scheduling algorithm that allows FaaSwap to meet the latency SLOs for individual inference functions. We have implemented FaaSwap as a prototype on a leading commercial serverless platform. Experimental evaluations demonstrate that, with model swapping, FaaSwap can concurrently serve hundreds of functions on a single worker node with 4 V100 GPUs, while achieving inference performance comparable to native execution (where each function runs on a dedicated GPU). When deployed on a 6-node production testbed, FaaSwap meets the latency SLOs for over 1k functions, the maximum that the testbed can handle concurrently.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.