Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Industrial Anomaly Detection and Localization Using Weakly-Supervised Residual Transformers (2306.03492v6)

Published 6 Jun 2023 in cs.CV

Abstract: Recent advancements in industrial anomaly detection (AD) have demonstrated that incorporating a small number of anomalous samples during training can significantly enhance accuracy. However, this improvement often comes at the cost of extensive annotation efforts, which are impractical for many real-world applications. In this paper, we introduce a novel framework, Weak}ly-supervised RESidual Transformer (WeakREST), designed to achieve high anomaly detection accuracy while minimizing the reliance on manual annotations. First, we reformulate the pixel-wise anomaly localization task into a block-wise classification problem. Second, we introduce a residual-based feature representation called Positional Fast Anomaly Residuals (PosFAR) which captures anomalous patterns more effectively. To leverage this feature, we adapt the Swin Transformer for enhanced anomaly detection and localization. Additionally, we propose a weak annotation approach, utilizing bounding boxes and image tags to define anomalous regions. This approach establishes a semi-supervised learning context that reduces the dependency on precise pixel-level labels. To further improve the learning process, we develop a novel ResMixMatch algorithm, capable of handling the interplay between weak labels and residual-based representations. On the benchmark dataset MVTec-AD, our method achieves an Average Precision (AP) of $83.0\%$, surpassing the previous best result of $82.7\%$ in the unsupervised setting. In the supervised AD setting, WeakREST attains an AP of $87.6\%$, outperforming the previous best of $86.0\%$. Notably, even when using weaker annotations such as bounding boxes, WeakREST exceeds the performance of leading methods relying on pixel-wise supervision, achieving an AP of $87.1\%$ compared to the prior best of $86.0\%$ on MVTec-AD.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube