Papers
Topics
Authors
Recent
2000 character limit reached

Towards Alleviating the Object Bias in Prompt Tuning-based Factual Knowledge Extraction (2306.03378v2)

Published 6 Jun 2023 in cs.IR

Abstract: Many works employed prompt tuning methods to automatically optimize prompt queries and extract the factual knowledge stored in Pretrained LLMs. In this paper, we observe that the optimized prompts, including discrete prompts and continuous prompts, exhibit undesirable object bias. To handle this problem, we propose a novel prompt tuning method called MeCoD. consisting of three modules: Prompt Encoder, Object Equalization and Biased Object Obstruction. Experimental results show that MeCoD can significantly reduce the object bias and at the same time improve accuracy of factual knowledge extraction.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.