Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CiT-Net: Convolutional Neural Networks Hand in Hand with Vision Transformers for Medical Image Segmentation (2306.03373v2)

Published 6 Jun 2023 in eess.IV and cs.CV

Abstract: The hybrid architecture of convolutional neural networks (CNNs) and Transformer are very popular for medical image segmentation. However, it suffers from two challenges. First, although a CNNs branch can capture the local image features using vanilla convolution, it cannot achieve adaptive feature learning. Second, although a Transformer branch can capture the global features, it ignores the channel and cross-dimensional self-attention, resulting in a low segmentation accuracy on complex-content images. To address these challenges, we propose a novel hybrid architecture of convolutional neural networks hand in hand with vision Transformers (CiT-Net) for medical image segmentation. Our network has two advantages. First, we design a dynamic deformable convolution and apply it to the CNNs branch, which overcomes the weak feature extraction ability due to fixed-size convolution kernels and the stiff design of sharing kernel parameters among different inputs. Second, we design a shifted-window adaptive complementary attention module and a compact convolutional projection. We apply them to the Transformer branch to learn the cross-dimensional long-term dependency for medical images. Experimental results show that our CiT-Net provides better medical image segmentation results than popular SOTA methods. Besides, our CiT-Net requires lower parameters and less computational costs and does not rely on pre-training. The code is publicly available at https://github.com/SR0920/CiT-Net.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com