Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 127 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Online Tensor Learning: Computational and Statistical Trade-offs, Adaptivity and Optimal Regret (2306.03372v3)

Published 6 Jun 2023 in stat.ML and cs.LG

Abstract: Large tensor learning algorithms are typically computationally expensive and require storing a vast amount of data. In this paper, we propose a unified online Riemannian gradient descent (oRGrad) algorithm for tensor learning, which is computationally efficient, consumes much less memory, and can handle sequentially arriving data while making timely predictions. The algorithm is applicable to both linear and generalized linear models. If the time horizon T is known, oRGrad achieves statistical optimality by choosing an appropriate fixed step size. We find that noisy tensor completion particularly benefits from online algorithms by avoiding the trimming procedure and ensuring sharp entry-wise statistical error, which is often technically challenging for offline methods. The regret of oRGrad is analyzed, revealing a fascinating trilemma concerning the computational convergence rate, statistical error, and regret bound. By selecting an appropriate constant step size, oRGrad achieves an $O(T{1/2})$ regret. We then introduce the adaptive-oRGrad algorithm, which can achieve the optimal $O(\log T)$ regret by adaptively selecting step sizes, regardless of whether the time horizon is known. The adaptive-oRGrad algorithm can attain a statistically optimal error rate without knowing the horizon. Comprehensive numerical simulations corroborate our theoretical findings. We show that oRGrad significantly outperforms its offline counterpart in predicting the solar F10.7 index with tensor predictors that monitor space weather impacts.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube