Global universal approximation of functional input maps on weighted spaces (2306.03303v3)
Abstract: We introduce so-called functional input neural networks defined on a possibly infinite dimensional weighted space with values also in a possibly infinite dimensional output space. To this end, we use an additive family to map the input weighted space to the hidden layer, on which a non-linear scalar activation function is applied to each neuron, and finally return the output via some linear readouts. Relying on Stone-Weierstrass theorems on weighted spaces, we can prove a global universal approximation result on weighted spaces for continuous functions going beyond the usual approximation on compact sets. This then applies in particular to approximation of (non-anticipative) path space functionals via functional input neural networks. As a further application of the weighted Stone-Weierstrass theorem we prove a global universal approximation result for linear functions of the signature. We also introduce the viewpoint of Gaussian process regression in this setting and emphasize that the reproducing kernel Hilbert space of the signature kernels are Cameron-Martin spaces of certain Gaussian processes. This paves a way towards uncertainty quantification for signature kernel regression.
- Metric hypertransformers are universal adapted maps. Preprint arXiv:2201.13094, 2022.
- Applications of signature methods to market anomaly detection. Preprint arXiv:2201.02441, 2022.
- A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930–945, 1993.
- Optimal stopping with signatures. Preprint arXiv:2105.00778, 2021.
- Neural networks in Fréchet spaces. Annals of Mathematics and Artificial Intelligence, 2022.
- S. Bernstein. Le problème de l’approximation des fonctions continues sur tout l’axe réel et l’une de ses applications. Bulletin de la Société Mathématique de France, 52:399–410, 1924.
- K.-D. Bierstedt. Gewichtete Räume stetiger vektorwertiger Funktionen und das injektive Tensorprodukt. PhD thesis, Johannes-Gutenberg Universität Mainz, Mainz, 1971.
- E. Bishop. A generalization of the Stone-Weierstrass theorem. Pacific Journal of Mathematics, 11:777–783, 1961.
- Convex monotone semigroups and their generators with respect to ΓΓ\Gammaroman_Γ-convergence. Preprint arXiv:2202.08653, 2022.
- The signature of a rough path: Uniqueness. Advances in Mathematics, 293:720–737, 2016.
- Optimal approximation with sparsely connected deep neural networks. SIAM Journal on Mathematics of Data Science, 1:8–45, 2019.
- N. Bourbaki. Eléments de mathématique, chapter Chapters 5-10. Actualités Scientifiques et Industrielles. Springer, Berlin, reprint of the 1974 original edition, 1974.
- H. Brézis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext. Springer, New York, 2011.
- B. Brosowski and F. Deutsch. An elementary proof of the Stone-Weierstrass theorem. Proceedings of the American Mathematical Society, 81(1):89–92, 1981.
- R. C. Buck. Bounded continuous functions on a locally compact space. Michigan Mathematical Journal, 5(2):95–104, 1958.
- A data-driven market simulator for small data environments. Preprint arXiv:2006.14498, 2020.
- E. J. Candès. Ridgelets: Theory and Applications. PhD thesis, Stanford University, 1998.
- General signature kernels. Preprint arXiv:2107.00447, 2021.
- D. Chen. A note on Machado-Bishop theorem in weighted spaces with applications. Journal of Approximation Theory, 247:1–19, 2019.
- K.-T. Chen. Integration of paths, geometric invariants and a generalized Baker- Hausdorff formula. Annals of Mathematics, 65(1):163–178, 1957.
- T. Chen and H. Chen. Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks. IEEE Transactions on Neural Networks, 6(4):904–910, 1995.
- I. Chevyrev and T. Lyons. Characteristic functions of measures on geometric rough paths. The Annals of Probability, 44(6):4049 – 4082, 2016.
- I. Chevyrev and H. Oberhauser. Signature moments to characterize laws of stochastic processes. Journal of Machine Learning Research, 23(176):1–42, 2022.
- Arbitrage-free neural-SDE market models. Preprint arXiv:2105.11053, 2021.
- R. Cont. Functional Ito Calculus and functional Kolmogorov equations, pages 123–208. Advanced Courses in Mathematics. Birkhauser, Basel, 2016. Lecture Notes of the Barcelona Summer School in Stochastic Analysis, July 2012.
- R. Cont and D.-A. Fournié. Change of variable formulas for non-anticipative functionals on path space. Journal of Functional Analysis, 259(4):1043–1072, 2010.
- R. Cont and D.-A. Fournié. Functional Itô calculus and stochastic integral representation of martingales. Annals of Probability, 41(1):109–133, 01 2013.
- Signature-based models: theory and calibration. Preprint arXiv:2207.13136, 2022.
- Discrete-time signatures and randomness in reservoir computing. IEEE Transactions on Neural Networks and Learning Systems, 33(11):6321–6330, 2021.
- A generative adversarial network approach to calibration of local stochastic volatility models. Risks, 8(4):101, 2020.
- Deep stochastic portfolio theory. 2023. Working Paper.
- C. Cuchiero and J. Möller. Signature methods for stochastic portfolio theory. 2023. Working Paper.
- Universal approximation theorems for continuous functions of càdlàg paths and Lévy-type signature models. Preprint arXiv:2208.02293, 2022.
- Signature SDEs from an affine and polynomial perspective. arXiv preprint arXiv:2302.01362, 2023.
- C. Cuchiero and J. Teichmann. Markovian lifts of positive semidefinite affine Volterra-type processes. Decisions in Economics and Finance, 42:407–448, 2019.
- C. Cuchiero and J. Teichmann. Generalized Feller processes and Markovian lifts of stochastic Volterra processes: the affine case. Journal of Evolution Equations, pages 1–48, 2020.
- G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4):303–314, 1989.
- J. Dixmier. Sur un théorème de Banach. Duke Mathematical Journal, 15(4):1057–1071, 1948.
- M. Dobrowolski. Angewandte Funktionalanalysis: Funktionalanalysis, Sobolev-Räume und Elliptische Differentialgleichungen. Springer-Verlag, 2010.
- P. Dörsek and J. Teichmann. A semigroup point of view on splitting schemes for stochastic (partial) differential equations, 2010.
- B. Dupire. Functional Itô calculus. Technical report, Bloomberg, 2009. Bloomberg Portfolio Research Paper No. 2009-04-FRONTIERS.
- R. E. Fernholz. Stochastic Portfolio Theory. Springer Science + Business Media, Berlin Heidelberg, 1st edition edition, 2002.
- F. Flandoli and D. Gatarek. Martingale and stationary solutions for stochastic Navier-Stokes equations. Probability Theory and Related Fields, 102(3):367–391, 1995.
- H. Föllmer. Calcul d’Ito sans probabilités. Séminaire de probabilités de Strasbourg, 15:143–150, 1981.
- H. Föllmer and A. Schied. Stochastic finance. In Stochastic Finance. de Gruyter, 2016.
- P. K. Friz and M. Hairer. A Course on Rough Paths: With an Introduction to Regularity Structures. Universitext. Springer International Publishing, Cham, 2nd edition, 2020.
- Multidimensional Stochastic Processes as Rough Paths: Theory and Applications. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2010.
- Robust pricing and hedging via neural SDEs. Preprint arXiv:2007.04154, 2020.
- R. Giles. A generalization of the strict topology. Transactions of the American Mathematical Society, 161:467–474, 1971.
- G. Godefroy and N. J. Kalton. Lipschitz-free Banach spaces. Studia Math, 159(1):121–141, 2003.
- Infinite-dimensional reservoir computing. Preprint arXiv:2304.00490, 2023.
- L. Grigoryeva and J.-P. Ortega. Echo state networks are universal. Neural Networks, 108:495–508, 2018.
- B. Hambly and T. Lyons. Uniqueness for the signature of a path of bounded variation and the reduced path group. Annals of Mathematics, 171(1):109–167, 2010.
- K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):251–257, 1991.
- K. Ito. Multiple Wiener integral. Journal of the Mathematical Society of Japan, 3(1):157–169, 05 1951.
- K. Ito. Spectral type of the shift transformation of differential processes with stationary increments. Transactions of the American Mathematical Society, 81(2):253–263, 1956.
- S. Kaijser. A note on dual Banach spaces. Mathematica Scandinavica, 41(2):325–330, 1977.
- Optimal execution with rough path signatures. SIAM Journal on Financial Mathematics, 11(2):470–493, 2020.
- J. L. Kelley. General topology, volume 27 of Graduate texts in mathematics. Springer-Verlag, New York, reprint edition, 1975.
- Neural SDEs as infinite-dimensional GANs. In International Conference on Machine Learning, pages 5453–5463. PMLR, 2021.
- D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning Representations, 2015, Conference Track Proceedings, May 2015.
- F. J. Kiraly and H. Oberhauser. Kernels for sequentially ordered data. Journal of Machine Learning Research, 20(31):1–45, 2019.
- J. Korevaar. Distribution proof of Wiener’s Tauberian theorem. Proceedings of the American Mathematical Society, 16(3):353–355, 1965.
- Neural operator: Learning maps between function spaces. Preprint arXiv:2108.08481, 2021.
- A. Kratsios and I. Bilokopytov. Non-euclidean universal approximation. Advances in Neural Information Processing Systems, 33:10635–10646, 2020.
- A transfer principle: Universal approximators between metric spaces from Euclidean universal approximators. Preprint arXiv:2304.12231, 2023.
- Error estimates for DeepONets: a deep learning framework in infinite dimensions. Transactions of Mathematics and Its Applications, 6(1), 2022.
- M. Ledoux and M. Talagrand. Probability in Banach spaces: Isoperimetry and Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete. Folge 3 Bd. 23. Springer, Berlin, 1991.
- Learning from the past, predicting the statistics for the future, learning an evolving system. arXiv preprint arXiv:1309.0260, 2013.
- Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature Machine Intelligence, 3:218–229, 2021.
- Numerical method for model-free pricing of exotic derivatives in discrete time using rough path signatures. Applied Mathematical Finance, 26(6):583–597, 2019.
- Non-parametric pricing and hedging of exotic derivatives. Applied Mathematical Finance, 27(6):457–494, 2020.
- Differential equations driven by rough paths. Lecture notes in mathematics 1908. Springer, Berlin, 2007.
- S. Machado. On Bishop’s generalization of the Weierstrass-Stone theorem. Indagationes Mathematicae, 80(3):218–224, 1977.
- W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5:115–133, 1943.
- M. Min and R. Hu. Signatured deep fictitious play for mean field games with common noise. Preprint arXiv:2106.03272, 2021.
- T. M. Mitchell. Machine Learning. McGraw-Hill series in computer science. WCB McGraw-Hill, Boston MA, 1997.
- J. R. Munkres. Topology. Pearson, Harlow, Essex, UK, 2nd, Pearson new international edition, 2014.
- L. Nachbin. Weighted approximation for algebras and modules of continuous functions: Real and self-adjoint complex cases. Annals of Mathematics, 81(2):289–302, 1965.
- A. Neufeld and P. Schmocker. Chaotic hedging with iterated integrals and neural networks. Preprint arXiv:2209.10166, 2022.
- A. Neufeld and P. Schmocker. Chaotic hedging with iterated integrals, neural networks, and jumps, 2023. Working Paper.
- K.-F. Ng. On a theorem of Dixmier. Mathematica Scandinavica, 29:279–280, 1971.
- Sig-Wasserstein GANs for Time Series Generation. Preprint arXiv:2111.01207, 2021.
- Sig-SDEs model for quantitative finance. In Proceedings of the First ACM International Conference on AI in Finance, pages 1–8, 2020.
- A. Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica, 8:143–195, 1999.
- J. B. Prolla. Bishop’s generalized Stone-Weierstrass theorem for weighted spaces. Mathematische Annalen, 191:283–289, 1971.
- J. B. Prolla. Weighted spaces of vector-valued continuous functions. Annali di Matematica Pura ed Applicata, 89:145–157, 1971.
- J. B. Prolla. Approximation of Vector Valued Functions. North-Holland Mathematics Studies 25. North-Holland, Amsterdam, 1977.
- Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686–707, 2019.
- Functional data analysis. Springer series in statistics. Springer, New York, 2nd edition, 2005.
- T. J. Ransford. A short elementary proof of the Bishop-Stone-Weierstrass theorem. Mathematical Proceedings of the Cambridge Philosophical Society, 96(2):309–311, 1984.
- M. Röckner and Z. Sobol. Kolmogorov equations in infinite dimensions: Well-posedness and regularity of solutions, with applications to stochastic generalized burgers equations. Annals of Probability, 34(2):663–727, 03 2006.
- W. Rudin. Functional analysis. International series in pure and applied mathematics. McGraw-Hill, Boston, Mass, 2nd edition, 1991.
- The signature kernel is the solution of a Goursat PDE. SIAM Journal on Mathematics of Data Science, 3(3):873–899, 2021.
- Neural stochastic PDEs: Resolution-invariant learning of continuous spatiotemporal dynamics. In Advances in Neural Information Processing Systems, 2022.
- Topological vector spaces, volume 3 of Graduate texts in mathematics. Springer, New York, 2nd edition, 1999.
- M. B. Stinchcombe. Neural network approximation of continuous functionals and continuous functions on compactifications. Neural Networks, 12(3):467–477, 1999.
- M. H. Stone. The generalized Weierstrass approximation theorem. Mathematics Magazine, 21(4):167–184, 1948.
- W. H. Summers. Weighted Locally Convex Spaces of Continuous Functions. PhD thesis, Louisiana State University, 1968.
- C. Todd. Stone-Weierstrass theorems for the strict topology. Proceedings of the American Mathematical Society, 16(4):654–659, 1965.
- H. Triebel. Theory of Function Spaces III. Monographs in Mathematics. Birkhäuser, Basel, Boston, Berlin, 2006.
- N. Weaver. Lipschitz Algebras. World Scientific, Singapore, 2nd edition, 1999.
- K. Weierstrass. Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen. Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften zu Berlin, II, 1885.
- N. Wiener. Tauberian theorems. Annals of Mathematics, 33(1):1–100, 1932.