Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Skill over Scale: The Case for Medium, Domain-Specific Models for SE (2306.03268v3)

Published 5 Jun 2023 in cs.CL and cs.SE

Abstract: Recent advancements in AI have sparked a trend in constructing large, generalist LLMs that handle a multitude of tasks, including many code-related ones. While these models are expensive to train and are often closed-source, they have enjoyed broad adoption because they tend to outperform smaller, domain-specific models of code. In this work, we argue that this is not a foregone conclusion. We show that modestly sized domain-specific models can outperform much larger ones on code labeling tasks, provided they are trained to the same standards. Concretely, we focus on StackOverflow (SO), which offers large volumes of aligned code and text data. We align established best-practices for pre-training LLMs with properties of SO as a data source, especially using a large context window (2,048 tokens), coupled with a powerful toolkit (Megatron-LM) to train two models: SOBertBase (125M parameters) and SOBertLarge (762M parameters), at a budget of just $374 and $1600 each. We compare the performance of our models with a prior domain-specific model which did not adopt many of these practices (BERTOverflow), as well two general-purpose BERT models and two models in OpenAI's GPT series (GPT-3.5 and GPT-4). We study four labeling tasks: question quality prediction, closed question prediction, NER and obsoletion prediction. The final task is a new benchmark we introduce, on which we additionally compare SOBert with a fine-tuned CodeLlama and StackLlama (models with 10x more parameters than SOBertLarge). Our models consistently outperform all baselines. In contrast, BertOverflow is outperformed by generalist models in most tasks. These results demonstrate that pre-training both extensively and properly on in-domain data can yield a powerful and affordable alternative to leveraging closed-source general-purpose models. Both models are released to the public on Hugging Face.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube