Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Construction d'un système de recommandation basé sur des contraintes via des graphes de connaissances (2306.03247v1)

Published 5 Jun 2023 in cs.IR

Abstract: Knowledge graphs in RDF model entities and their relations using ontologies, and have gained popularity for information modeling. In recommender systems, knowledge graphs help represent more links and relationships between users and items. Constraint-based recommender systems leverage deep recommendation knowledge to identify relevant suggestions. When combined with knowledge graphs, they offer benefits in constraint sets. This paper explores a constraint-based recommender system using RDF knowledge graphs for the vehicle purchase/sale domain. Our experiments demonstrate that the proposed approach efficiently identifies recommendations based on user preferences.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.