Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Improving Accelerated Federated Learning with Compression and Importance Sampling (2306.03240v1)

Published 5 Jun 2023 in cs.LG

Abstract: Federated Learning is a collaborative training framework that leverages heterogeneous data distributed across a vast number of clients. Since it is practically infeasible to request and process all clients during the aggregation step, partial participation must be supported. In this setting, the communication between the server and clients poses a major bottleneck. To reduce communication loads, there are two main approaches: compression and local steps. Recent work by Mishchenko et al. [2022] introduced the new ProxSkip method, which achieves an accelerated rate using the local steps technique. Follow-up works successfully combined local steps acceleration with partial participation [Grudzie\'n et al., 2023, Condat et al. 2023] and gradient compression [Condat et al. [2022]. In this paper, we finally present a complete method for Federated Learning that incorporates all necessary ingredients: Local Training, Compression, and Partial Participation. We obtain state-of-the-art convergence guarantees in the considered setting. Moreover, we analyze the general sampling framework for partial participation and derive an importance sampling scheme, which leads to even better performance. We experimentally demonstrate the advantages of the proposed method in practice.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube