Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Upwind Finite Difference Method to Singularly Perturbed Convection Diffusion Problems on a Shishkin Mesh (2306.03181v2)

Published 5 Jun 2023 in math.NA and cs.NA

Abstract: This paper introduces a numerical approach to solve singularly perturbed convection diffusion boundary value problems for second-order ordinary differential equations that feature a small positive parameter {\epsilon} multiplying the highest derivative. We specifically examine Dirichlet boundary conditions. To solve this differential equation, we propose an upwind finite difference method and incorporate the Shishkin mesh scheme to capture the solution near boundary layers. Our solver is both direct and of high accuracy, with computation time that scales linearly with the number of grid points. MATLAB code of the numerical recipe is made publicly available. We present numerical results to validate the theoretical results and assess the accuracy of our method. The tables and graphs included in this paper demonstrate the numerical outcomes, which indicate that our proposed method offers a highly accurate approximation of the exact solution.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)