$L2$-$1_σ$ Scheme on a Graded Mesh for a Multi-term Time-fractional Nonlocal Parabolic Problem (2306.03114v1)
Abstract: In this article, we propose numerical scheme for solving a multi-term time-fractional nonlocal parabolic partial differential equation (PDE). The scheme comprises $L2$-$1_{\sigma}$ scheme on a graded mesh in time and Galerkin finite element method (FEM) in space. We present the discrete fractional Gr$\ddot{{o}}$nwall inequality for $L2$-$1_{\sigma}$ scheme in case of multi-term time-fractional derivative, which is a multi-term analogue of~\cite[Lemma 4.1]{[r16]}. We derive \textit{a priori} bound and error estimate for the fully-discrete solution. The theoretical results are confirmed via numerical experiments. We should note that, though the way of proving the discrete fractional Gr$\ddot{{o}}$nwall inequality is similar to~\cite{[r5]}, the calculation parts are more complicated in this article.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.