Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

The $L^\infty$ Learnability of Reproducing Kernel Hilbert Spaces (2306.02833v1)

Published 5 Jun 2023 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: In this work, we analyze the learnability of reproducing kernel Hilbert spaces (RKHS) under the $L\infty$ norm, which is critical for understanding the performance of kernel methods and random feature models in safety- and security-critical applications. Specifically, we relate the $L\infty$ learnability of a RKHS to the spectrum decay of the associate kernel and both lower bounds and upper bounds of the sample complexity are established. In particular, for dot-product kernels on the sphere, we identify conditions when the $L\infty$ learning can be achieved with polynomial samples. Let $d$ denote the input dimension and assume the kernel spectrum roughly decays as $\lambda_k\sim k{-1-\beta}$ with $\beta>0$. We prove that if $\beta$ is independent of the input dimension $d$, then functions in the RKHS can be learned efficiently under the $L\infty$ norm, i.e., the sample complexity depends polynomially on $d$. In contrast, if $\beta=1/\mathrm{poly}(d)$, then the $L\infty$ learning requires exponentially many samples.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube