Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Comparative Study on Semi-supervised Learning Applied for Anomaly Detection in Hydraulic Condition Monitoring System (2306.02709v3)

Published 5 Jun 2023 in cs.LG and stat.ML

Abstract: Condition-based maintenance is becoming increasingly important in hydraulic systems. However, anomaly detection for these systems remains challenging, especially since that anomalous data is scarce and labeling such data is tedious and even dangerous. Therefore, it is advisable to make use of unsupervised or semi-supervised methods, especially for semi-supervised learning which utilizes unsupervised learning as a feature extraction mechanism to aid the supervised part when only a small number of labels are available. This study systematically compares semi-supervised learning methods applied for anomaly detection in hydraulic condition monitoring systems. Firstly, thorough data analysis and feature learning were carried out to understand the open-sourced hydraulic condition monitoring dataset. Then, various methods were implemented and evaluated including traditional stand-alone semi-supervised learning models (e.g., one-class SVM, Robust Covariance), ensemble models (e.g., Isolation Forest), and deep neural network based models (e.g., autoencoder, Hierarchical Extreme Learning Machine (HELM)). Typically, this study customized and implemented an extreme learning machine based semi-supervised HELM model and verified its superiority over other semi-supervised methods. Extensive experiments show that the customized HELM model obtained state-of-the-art performance with the highest accuracy (99.5%), the lowest false positive rate (0.015), and the best F1-score (0.985) beating other semi-supervised methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com