Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fully-Dynamic All-Pairs Shortest Paths: Likely Optimal Worst-Case Update Time (2306.02662v3)

Published 5 Jun 2023 in cs.DS

Abstract: The All-Pairs Shortest Paths (APSP) problem is one of the fundamental problems in theoretical computer science. It asks to compute the distance matrix of a given $n$-vertex graph. We revisit the classical problem of maintaining the distance matrix under a fully dynamic setting undergoing vertex insertions and deletions with a fast worst-case running time and efficient space usage. Although an algorithm with amortized update-time $\tilde O(n ^ 2)$ has been known for nearly two decades [Demetrescu and Italiano, STOC 2003], the current best algorithm for worst-case running time with efficient space usage runs is due to [Gutenberg and Wulff-Nilsen, SODA 2020], which improves the space usage of the previous algorithm due to [Abraham, Chechik, and Krinninger, SODA 2017] to $\tilde O(n ^ 2)$ but fails to improve their running time of $\tilde O(n ^ {2 + 2 / 3})$. It has been conjectured that no algorithm in $O(n ^ {2.5 - \epsilon})$ worst-case update time exists. For graphs without negative cycles, we meet this conjectured lower bound by introducing a Monte Carlo algorithm running in randomized $\tilde O(n ^ {2.5})$ time while keeping the $\tilde O(n ^ 2)$ space bound from the previous algorithm. Our breakthrough is made possible by the idea of ``hop-dominant shortest paths,'' which are shortest paths with a constraint on hops (number of vertices) that remain shortest after we relax the constraint by a constant factor.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. Dynamic decremental approximate distance oracles with (1+ε,2)1𝜀2(1+\varepsilon,2)( 1 + italic_ε , 2 ) stretch. 07 2013.
  2. Fully dynamic approximate distance oracles for planar graphs via forbidden-set distance labels. pages 1199–1217, 05 2012. doi:10.1145/2213977.2214084.
  3. Fully dynamic all-pairs shortest paths with worst-case update-time revisited. In SODA, 2017.
  4. Fully dynamic all-pairs shortest paths: Breaking the o(n) barrier. Leibniz International Proceedings in Informatics, LIPIcs, 28:1–16, 09 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.1.
  5. Incremental algorithms for minimal length paths. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’90, page 12–21, USA, 1990. Society for Industrial and Applied Mathematics.
  6. Aaron Bernstein. Fully dynamic (2 + epsilon) approximate all-pairs shortest paths with fast query and close to linear update time. pages 693–702, 10 2009. doi:10.1109/FOCS.2009.16.
  7. Aaron Bernstein. Maintaining shortest paths under deletions in weighted directed graphs. SIAM Journal on Computing, 45:548–574, 01 2016. doi:10.1137/130938670.
  8. Deterministic decremental sssp and approximate min-cost flow in almost-linear time. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages 1000–1008. IEEE, 2022.
  9. Improved decremental algorithms for maintaining transitive closure and all-pairs shortest paths. pages 117–123, 01 2002. doi:10.1145/509927.509928.
  10. Maintaining all-pairs approximate shortest paths under deletion of edges. In SODA ’03, 2003.
  11. Shiri Chechik. Near-optimal approximate decremental all pairs shortest paths. pages 170–181, 10 2018. doi:10.1109/FOCS.2018.00025.
  12. Julia Chuzhoy. Decremental all-pairs shortest paths in deterministic near-linear time, 09 2021.
  13. Randomized mwu for positive lps. In SODA, 2018.
  14. Faster Deterministic Worst-Case Fully Dynamic All-Pairs Shortest Paths via Decremental Hop-Restricted Shortest Paths, pages 87–99. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611977554.ch4, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611977554.ch4, doi:10.1137/1.9781611977554.ch4.
  15. Improved bounds and new trade-offs for dynamic all pairs shortest paths. pages 633–643, 07 2002. doi:10.1007/3-540-45465-9_54.
  16. A new approach to dynamic all pairs shortest paths. J. ACM, 51:968–992, 01 2004. doi:10.1145/780542.780567.
  17. Fully dynamic all-pairs shortest paths with real weights. Journal of Computer and System Sciences, 72:813–837, 08 2006. doi:10.1016/j.jcss.2005.05.005.
  18. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematikn, 1:269–271, 1959.
  19. Decremental APSP in Unweighted Digraphs Versus an Adaptive Adversary. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz International Proceedings in Informatics (LIPIcs), pages 64:1–64:20, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2021/14133, doi:10.4230/LIPIcs.ICALP.2021.64.
  20. An on-line edge-deletion problem. J. ACM, 28:1–4, 1981.
  21. Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, jun 1962. doi:10.1145/367766.368168.
  22. Planar graphs, negative weight edges, shortest paths, and near linear time. Journal of Computer and System Sciences, 72:868–889, 08 2006. doi:10.1016/j.jcss.2005.05.007.
  23. M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.
  24. Deterministic Algorithms for Decremental Approximate Shortest Paths: Faster and Simpler, pages 2522–2541. 2020. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611975994.154, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611975994.154, doi:10.1137/1.9781611975994.154.
  25. Fully-Dynamic All-Pairs Shortest Paths: Improved Worst-Case Time and Space Bounds, pages 2562–2574. SIAM, 2020. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611975994.156, doi:10.1137/1.9781611975994.156.
  26. Maintaining minimum spanning forests in dynamic graphs. SIAM Journal on Computing, 31, 10 2001. doi:10.1137/S0097539797327209.
  27. Dynamic approximate all-pairs shortest paths: Breaking the o⁢(m⁢n)𝑜𝑚𝑛o(mn)italic_o ( italic_m italic_n ) barrier and derandomization. SIAM Journal on Computing, 45:947–1006, 01 2016. doi:10.1137/140957299.
  28. Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci., 55:3–23, 08 1997. doi:10.1006/jcss.1997.1493.
  29. Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. Journal of the ACM (JACM), 24:1 – 13, 1977.
  30. Adam Karczmarz. Fully dynamic algorithms for minimum weight cycle and related problems. In International Colloquium on Automata, Languages and Programming, 2021.
  31. Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. Foundations of Computer Science, 1975., 16th Annual Symposium on, 09 1999. doi:10.1109/SFFCS.1999.814580.
  32. Simple Label-Correcting Algorithms for Partially Dynamic Approximate Shortest Paths in Directed Graphs, pages 106–120. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611976014.15, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611976014.15, doi:10.1137/1.9781611976014.15.
  33. Reliable hubs for partially-dynamic all-pairs shortest paths in directed graphs. In ESA, 2019.
  34. P. Klein and S. Subramanian. A fully dynamic approximation scheme for shortest paths in planar graphs. Algorithmica, 22:235–249, 11 1998. doi:10.1007/PL00009223.
  35. Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 84:1–84:20, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2023/18136, doi:10.4230/LIPIcs.ICALP.2023.84.
  36. A space saving trick for directed dynamic transitive closure and shortest path algorithms. volume 2108, pages 268–277, 08 2001. doi:10.1007/3-540-44679-6_30.
  37. Bernard Roy. Transitivité et connexité. C. R. Acad. Sci. Paris (in French), (249):216–218, 1959.
  38. Dynamic approximate all-pairs shortest paths in undirected graphs. Foundations of Computer Science, 1975., 16th Annual Symposium on, 41, 05 2004. doi:10.1109/FOCS.2004.22.
  39. On dynamic shortest paths problems. volume 61, 05 2004. doi:10.1007/978-3-540-30140-0_52.
  40. Mikkel Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. pages 384–396, 07 2004. doi:10.1007/978-3-540-27810-8_33.
  41. Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. pages 112–119, 01 2005. doi:10.1145/1060590.1060607.
  42. High-probability parallel transitive-closure algorithms. SIAM J. Comput., 20:100–125, 02 1991. doi:10.1145/97444.97686.
  43. Jan van den Brand and Danupon Nanongkai. Dynamic approximate shortest paths and beyond: Subquadratic and worst-case update time. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages 436–455, 2019. doi:10.1109/FOCS.2019.00035.
  44. Stephen Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12, jan 1962. doi:10.1145/321105.321107.
  45. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. STOC ’14, page 664–673, New York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2591796.2591811.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com