Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Rethinking the visual cues in audio-visual speaker extraction (2306.02625v1)

Published 5 Jun 2023 in cs.SD and eess.AS

Abstract: The Audio-Visual Speaker Extraction (AVSE) algorithm employs parallel video recording to leverage two visual cues, namely speaker identity and synchronization, to enhance performance compared to audio-only algorithms. However, the visual front-end in AVSE is often derived from a pre-trained model or end-to-end trained, making it unclear which visual cue contributes more to the speaker extraction performance. This raises the question of how to better utilize visual cues. To address this issue, we propose two training strategies that decouple the learning of the two visual cues. Our experimental results demonstrate that both visual cues are useful, with the synchronization cue having a higher impact. We introduce a more explainable model, the Decoupled Audio-Visual Speaker Extraction (DAVSE) model, which leverages both visual cues.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.