Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 128 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

OTF: Optimal Transport based Fusion of Supervised and Self-Supervised Learning Models for Automatic Speech Recognition (2306.02541v1)

Published 5 Jun 2023 in eess.AS

Abstract: Self-Supervised Learning (SSL) Automatic Speech Recognition (ASR) models have shown great promise over Supervised Learning (SL) ones in low-resource settings. However, the advantages of SSL are gradually weakened when the amount of labeled data increases in many industrial applications. To further improve the ASR performance when abundant labels are available, we first explore the potential of combining SL and SSL ASR models via analyzing their complementarity in recognition accuracy and optimization property. Then, we propose a novel Optimal Transport based Fusion (OTF) method for SL and SSL models without incurring extra computation cost in inference. Specifically, optimal transport is adopted to softly align the layer-wise weights to unify the two different networks into a single one. Experimental results on the public 1k-hour English LibriSpeech dataset and our in-house 2.6k-hour Chinese dataset show that OTF largely outperforms the individual models with lower error rates.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.