Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Study of Situational Reasoning for Traffic Understanding (2306.02520v2)

Published 5 Jun 2023 in cs.CL, cs.AI, and cs.LG

Abstract: Intelligent Traffic Monitoring (ITMo) technologies hold the potential for improving road safety/security and for enabling smart city infrastructure. Understanding traffic situations requires a complex fusion of perceptual information with domain-specific and causal commonsense knowledge. Whereas prior work has provided benchmarks and methods for traffic monitoring, it remains unclear whether models can effectively align these information sources and reason in novel scenarios. To address this assessment gap, we devise three novel text-based tasks for situational reasoning in the traffic domain: i) BDD-QA, which evaluates the ability of LLMs (LMs) to perform situational decision-making, ii) TV-QA, which assesses LMs' abilities to reason about complex event causality, and iii) HDT-QA, which evaluates the ability of models to solve human driving exams. We adopt four knowledge-enhanced methods that have shown generalization capability across language reasoning tasks in prior work, based on natural language inference, commonsense knowledge-graph self-supervision, multi-QA joint training, and dense retrieval of domain information. We associate each method with a relevant knowledge source, including knowledge graphs, relevant benchmarks, and driving manuals. In extensive experiments, we benchmark various knowledge-aware methods against the three datasets, under zero-shot evaluation; we provide in-depth analyses of model performance on data partitions and examine model predictions categorically, to yield useful insights on traffic understanding, given different background knowledge and reasoning strategies.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube