Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

rPPG-MAE: Self-supervised Pre-training with Masked Autoencoders for Remote Physiological Measurement (2306.02301v1)

Published 4 Jun 2023 in cs.CV

Abstract: Remote photoplethysmography (rPPG) is an important technique for perceiving human vital signs, which has received extensive attention. For a long time, researchers have focused on supervised methods that rely on large amounts of labeled data. These methods are limited by the requirement for large amounts of data and the difficulty of acquiring ground truth physiological signals. To address these issues, several self-supervised methods based on contrastive learning have been proposed. However, they focus on the contrastive learning between samples, which neglect the inherent self-similar prior in physiological signals and seem to have a limited ability to cope with noisy. In this paper, a linear self-supervised reconstruction task was designed for extracting the inherent self-similar prior in physiological signals. Besides, a specific noise-insensitive strategy was explored for reducing the interference of motion and illumination. The proposed framework in this paper, namely rPPG-MAE, demonstrates excellent performance even on the challenging VIPL-HR dataset. We also evaluate the proposed method on two public datasets, namely PURE and UBFC-rPPG. The results show that our method not only outperforms existing self-supervised methods but also exceeds the state-of-the-art (SOTA) supervised methods. One important observation is that the quality of the dataset seems more important than the size in self-supervised pre-training of rPPG. The source code is released at https://github.com/linuxsino/rPPG-MAE.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube