Papers
Topics
Authors
Recent
2000 character limit reached

Variational convergence of the Scharfetter-Gummel scheme to the aggregation-diffusion equation and vanishing diffusion limit (2306.02226v2)

Published 4 Jun 2023 in math.NA, cs.NA, and math.AP

Abstract: In this paper, we explore the convergence of the semi-discrete Scharfetter-Gummel scheme for the aggregation-diffusion equation using a variational approach. Our investigation involves obtaining a novel gradient structure for the finite volume space discretization that works consistently for any non-negative diffusion constant. This allows us to study the discrete-to-continuum and zero-diffusion limits simultaneously. The zero-diffusion limit for the Scharfetter-Gummel scheme corresponds to the upwind finite volume scheme for the aggregation equation. In both cases, we establish a convergence result in terms of gradient structures, recovering the Otto gradient flow structure for the aggregation-diffusion equation based on the 2-Wasserstein distance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.