Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 142 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On the Generalized Mean Densest Subgraph Problem: Complexity and Algorithms (2306.02172v1)

Published 3 Jun 2023 in cs.DS

Abstract: Dense subgraph discovery is an important problem in graph mining and network analysis with several applications. Two canonical problems here are to find a maxcore (subgraph of maximum min degree) and to find a densest subgraph (subgraph of maximum average degree). Both of these problems can be solved in polynomial time. Veldt, Benson, and Kleinberg [VBK21] introduced the generalized $p$-mean densest subgraph problem which captures the maxcore problem when $p=-\infty$ and the densest subgraph problem when $p=1$. They observed that the objective leads to a supermodular function when $p \ge 1$ and hence can be solved in polynomial time; for this case, they also developed a simple greedy peeling algorithm with a bounded approximation ratio. In this paper, we make several contributions. First, we prove that for any $p \in (-\frac{1}{8}, 0) \cup (0, \frac{1}{4})$ the problem is NP-Hard and for any $p \in (-3,0) \cup (0,1)$ the weighted version of the problem is NP-Hard, partly resolving a question left open in [VBK21]. Second, we describe two simple $1/2$-approximation algorithms for all $p < 1$, and show that our analysis of these algorithms is tight. For $p > 1$ we develop a fast near-linear time implementation of the greedy peeling algorithm from [VBK21]. This allows us to plug it into the iterative peeling algorithm that was shown to converge to an optimum solution [CQT22]. We demonstrate the efficacy of our algorithms by running extensive experiments on large graphs. Together, our results provide a comprehensive understanding of the complexity of the $p$-mean densest subgraph problem and lead to fast and provably good algorithms for the full range of $p$.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.