Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Model-aided Federated Reinforcement Learning for Multi-UAV Trajectory Planning in IoT Networks (2306.02029v2)

Published 3 Jun 2023 in cs.LG

Abstract: Deploying teams of unmanned aerial vehicles (UAVs) to harvest data from distributed Internet of Things (IoT) devices requires efficient trajectory planning and coordination algorithms. Multi-agent reinforcement learning (MARL) has emerged as a solution, but requires extensive and costly real-world training data. To tackle this challenge, we propose a novel model-aided federated MARL algorithm to coordinate multiple UAVs on a data harvesting mission with only limited knowledge about the environment. The proposed algorithm alternates between building an environment simulation model from real-world measurements, specifically learning the radio channel characteristics and estimating unknown IoT device positions, and federated QMIX training in the simulated environment. Each UAV agent trains a local QMIX model in its simulated environment and continuously consolidates it through federated learning with other agents, accelerating the learning process. A performance comparison with standard MARL algorithms demonstrates that our proposed model-aided FedQMIX algorithm reduces the need for real-world training experiences by around three magnitudes while attaining similar data collection performance.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube