Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Size-Independent Sample Complexity of ReLU Networks (2306.01992v3)

Published 3 Jun 2023 in cs.LG and stat.ML

Abstract: We study the sample complexity of learning ReLU neural networks from the point of view of generalization. Given norm constraints on the weight matrices, a common approach is to estimate the Rademacher complexity of the associated function class. Previously Golowich-Rakhlin-Shamir (2020) obtained a bound independent of the network size (scaling with a product of Frobenius norms) except for a factor of the square-root depth. We give a refinement which often has no explicit depth-dependence at all.

Citations (5)

Summary

We haven't generated a summary for this paper yet.