Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Domain Decomposition Methods for the Monge-Ampère equation (2306.01677v1)

Published 2 Jun 2023 in math.NA and cs.NA

Abstract: We introduce a new overlapping Domain Decomposition Method (DDM) to solve the fully nonlinear Monge-Amp`ere equation. While DDMs have been extensively studied for linear problems, their application to fully nonlinear partial differential equations (PDE) remains limited in the literature. To address this gap, we establish a proof of global convergence of these new iterative algorithms using a discrete comparison principle argument. Several numerical tests are performed to validate the convergence theorem. These numerical experiments involve examples of varying regularity. Computational experiments show that method is efficient, robust, and requires relatively few iterations to converge. The results reveal great potential for DDM methods to lead to highly efficient and parallelizable solvers for large-scale problems that are computationally intractable using existing solution methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.