Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

PanoGRF: Generalizable Spherical Radiance Fields for Wide-baseline Panoramas (2306.01531v2)

Published 2 Jun 2023 in cs.CV and cs.GR

Abstract: Achieving an immersive experience enabling users to explore virtual environments with six degrees of freedom (6DoF) is essential for various applications such as virtual reality (VR). Wide-baseline panoramas are commonly used in these applications to reduce network bandwidth and storage requirements. However, synthesizing novel views from these panoramas remains a key challenge. Although existing neural radiance field methods can produce photorealistic views under narrow-baseline and dense image captures, they tend to overfit the training views when dealing with \emph{wide-baseline} panoramas due to the difficulty in learning accurate geometry from sparse $360{\circ}$ views. To address this problem, we propose PanoGRF, Generalizable Spherical Radiance Fields for Wide-baseline Panoramas, which construct spherical radiance fields incorporating $360{\circ}$ scene priors. Unlike generalizable radiance fields trained on perspective images, PanoGRF avoids the information loss from panorama-to-perspective conversion and directly aggregates geometry and appearance features of 3D sample points from each panoramic view based on spherical projection. Moreover, as some regions of the panorama are only visible from one view while invisible from others under wide baseline settings, PanoGRF incorporates $360{\circ}$ monocular depth priors into spherical depth estimation to improve the geometry features. Experimental results on multiple panoramic datasets demonstrate that PanoGRF significantly outperforms state-of-the-art generalizable view synthesis methods for wide-baseline panoramas (e.g., OmniSyn) and perspective images (e.g., IBRNet, NeuRay).

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.