Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Feature Reuse Framework with Texture-adaptive Aggregation for Reference-based Super-Resolution (2306.01500v1)

Published 2 Jun 2023 in cs.CV

Abstract: Reference-based super-resolution (RefSR) has gained considerable success in the field of super-resolution with the addition of high-resolution reference images to reconstruct low-resolution (LR) inputs with more high-frequency details, thereby overcoming some limitations of single image super-resolution (SISR). Previous research in the field of RefSR has mostly focused on two crucial aspects. The first is accurate correspondence matching between the LR and the reference (Ref) image. The second is the effective transfer and aggregation of similar texture information from the Ref images. Nonetheless, an important detail of perceptual loss and adversarial loss has been underestimated, which has a certain adverse effect on texture transfer and reconstruction. In this study, we propose a feature reuse framework that guides the step-by-step texture reconstruction process through different stages, reducing the negative impacts of perceptual and adversarial loss. The feature reuse framework can be used for any RefSR model, and several RefSR approaches have improved their performance after being retrained using our framework. Additionally, we introduce a single image feature embedding module and a texture-adaptive aggregation module. The single image feature embedding module assists in reconstructing the features of the LR inputs itself and effectively lowers the possibility of including irrelevant textures. The texture-adaptive aggregation module dynamically perceives and aggregates texture information between the LR inputs and the Ref images using dynamic filters. This enhances the utilization of the reference texture while reducing reference misuse. The source code is available at https://github.com/Yi-Yang355/FRFSR.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.