Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Light Coreference Resolution for Russian with Hierarchical Discourse Features (2306.01465v1)

Published 2 Jun 2023 in cs.CL

Abstract: Coreference resolution is the task of identifying and grouping mentions referring to the same real-world entity. Previous neural models have mainly focused on learning span representations and pairwise scores for coreference decisions. However, current methods do not explicitly capture the referential choice in the hierarchical discourse, an important factor in coreference resolution. In this study, we propose a new approach that incorporates rhetorical information into neural coreference resolution models. We collect rhetorical features from automated discourse parses and examine their impact. As a base model, we implement an end-to-end span-based coreference resolver using a partially fine-tuned multilingual entity-aware LLM LUKE. We evaluate our method on the RuCoCo-23 Shared Task for coreference resolution in Russian. Our best model employing rhetorical distance between mentions has ranked 1st on the development set (74.6% F1) and 2nd on the test set (73.3% F1) of the Shared Task. We hope that our work will inspire further research on incorporating discourse information in neural coreference resolution models.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube