Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring the Boundaries of Semi-Supervised Facial Expression Recognition using In-Distribution, Out-of-Distribution, and Unconstrained Data (2306.01229v2)

Published 2 Jun 2023 in cs.CV

Abstract: Deep learning-based methods have been the key driving force behind much of the recent success of facial expression recognition (FER) systems. However, the need for large amounts of labelled data remains a challenge. Semi-supervised learning offers a way to overcome this limitation, allowing models to learn from a small amount of labelled data along with a large unlabelled dataset. While semi-supervised learning has shown promise in FER, most current methods from general computer vision literature have not been explored in the context of FER. In this work, we present a comprehensive study on 11 of the most recent semi-supervised methods, in the context of FER, namely Pi-model, Pseudo-label, Mean Teacher, VAT, UDA, MixMatch, ReMixMatch, FlexMatch, CoMatch, and CCSSL. Our investigation covers semi-supervised learning from in-distribution, out-of-distribution, unconstrained, and very small unlabelled data. Our evaluation includes five FER datasets plus one large face dataset for unconstrained learning. Our results demonstrate that FixMatch consistently achieves better performance on in-distribution unlabelled data, while ReMixMatch stands out among all methods for out-of-distribution, unconstrained, and scarce unlabelled data scenarios. Another significant observation is that with an equal number of labelled samples, semi-supervised learning delivers a considerable improvement over supervised learning, regardless of whether the unlabelled data is in-distribution, out-of-distribution, or unconstrained. We also conduct sensitivity analyses on critical hyper-parameters for the two best methods of each setting. To facilitate reproducibility and further development, we make our code publicly available at: github.com/ShuvenduRoy/SSL_FER_OOD.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.