Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Evaluating the Capabilities of Multi-modal Reasoning Models with Synthetic Task Data (2306.01144v1)

Published 1 Jun 2023 in cs.LG and cs.CL

Abstract: The impressive advances and applications of large language and joint language-and-visual understanding models has led to an increased need for methods of probing their potential reasoning capabilities. However, the difficulty of gather naturally-occurring data for complex multi-modal reasoning tasks bottlenecks the evaluation of AI methods on tasks which are not already covered by an academic dataset. In this work, we leverage recent advances in high resolution text-to-image generation to develop a framework for generating evaluation data for multi-modal reasoning tasks. We apply this framework to generate context-dependent anomaly data, creating a synthetic dataset on a challenging task which is not well covered by existing datasets. We benchmark the performance of a state-of-the-art visual question answering (VQA) model against data generated with this method, and demonstrate that while the task is tractable, the model performs significantly worse on the context-dependent anomaly detection task than on standard VQA tasks.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.