Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Pseudo Labels for Single Positive Multi-Label Learning (2306.01034v1)

Published 1 Jun 2023 in cs.LG and cs.CV

Abstract: The cost of data annotation is a substantial impediment for multi-label image classification: in every image, every category must be labeled as present or absent. Single positive multi-label (SPML) learning is a cost-effective solution, where models are trained on a single positive label per image. Thus, SPML is a more challenging domain, since it requires dealing with missing labels. In this work, we propose a method to turn single positive data into fully-labeled data: Pseudo Multi-Labels. Basically, a teacher network is trained on single positive labels. Then, we treat the teacher model's predictions on the training data as ground-truth labels to train a student network on fully-labeled images. With this simple approach, we show that the performance achieved by the student model approaches that of a model trained on the actual fully-labeled images.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube