Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Effective Structured Prompting by Meta-Learning and Representative Verbalizer (2306.00618v2)

Published 1 Jun 2023 in cs.CL, cs.AI, and cs.LG

Abstract: Prompt tuning for pre-trained masked LLMs (MLM) has shown promising performance in natural language processing tasks with few labeled examples. It tunes a prompt for the downstream task, and a verbalizer is used to bridge the predicted token and label prediction. Due to the limited training data, prompt initialization is crucial for prompt tuning. Recently, MetaPrompting (Hou et al., 2022) uses meta-learning to learn a shared initialization for all task-specific prompts. However, a single initialization is insufficient to obtain good prompts for all tasks and samples when the tasks are complex. Moreover, MetaPrompting requires tuning the whole MLM, causing a heavy burden on computation and memory as the MLM is usually large. To address these issues, we use a prompt pool to extract more task knowledge and construct instance-dependent prompts via attention. We further propose a novel soft verbalizer (RepVerb) which constructs label embedding from feature embeddings directly. Combining meta-learning the prompt pool and RepVerb, we propose MetaPrompter for effective structured prompting. MetaPrompter is parameter-efficient as only the pool is required to be tuned. Experimental results demonstrate that MetaPrompter performs better than the recent state-of-the-arts and RepVerb outperforms existing soft verbalizers.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.