Improving Protein-peptide Interface Predictions in the Low Data Regime (2306.00557v1)
Abstract: We propose a novel approach for predicting protein-peptide interactions using a bi-modal transformer architecture that learns an inter-facial joint distribution of residual contacts. The current data sets for crystallized protein-peptide complexes are limited, making it difficult to accurately predict interactions between proteins and peptides. To address this issue, we propose augmenting the existing data from PepBDB with pseudo protein-peptide complexes derived from the PDB. The augmented data set acts as a method to transfer physics-based contextdependent intra-residue (within a domain) interactions to the inter-residual (between) domains. We show that the distributions of inter-facial residue-residue interactions share overlap with inter residue-residue interactions, enough to increase predictive power of our bi-modal transformer architecture. In addition, this dataaugmentation allows us to leverage the vast amount of protein-only data available in the PDB to train neural networks, in contrast to template-based modeling that acts as a prior
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.