Papers
Topics
Authors
Recent
2000 character limit reached

Parameterized Wasserstein Hamiltonian Flow (2306.00191v2)

Published 31 May 2023 in math.NA and cs.NA

Abstract: In this work, we propose a numerical method to compute the Wasserstein Hamiltonian flow (WHF), which is a Hamiltonian system on the probability density manifold. Many well-known PDE systems can be reformulated as WHFs. We use parameterized function as push-forward map to characterize the solution of WHF, and convert the PDE to a finite-dimensional ODE system, which is a Hamiltonian system in the phase space of the parameter manifold. We establish error analysis results for the continuous time approximation scheme in Wasserstein metric. For the numerical implementation, we use neural networks as push-forward maps. We apply an effective symplectic scheme to solve the derived Hamiltonian ODE system so that the method preserves some important quantities such as total energy. The computation is done by fully deterministic symplectic integrator without any neural network training. Thus, our method does not involve direct optimization over network parameters and hence can avoid the error introduced by stochastic gradient descent (SGD) methods, which is usually hard to quantify and measure. The proposed algorithm is a sampling-based approach that scales well to higher dimensional problems. In addition, the method also provides an alternative connection between the Lagrangian and Eulerian perspectives of the original WHF through the parameterized ODE dynamics.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube