Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

The Canadian Cropland Dataset: A New Land Cover Dataset for Multitemporal Deep Learning Classification in Agriculture (2306.00114v2)

Published 31 May 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Monitoring land cover using remote sensing is vital for studying environmental changes and ensuring global food security through crop yield forecasting. Specifically, multitemporal remote sensing imagery provides relevant information about the dynamics of a scene, which has proven to lead to better land cover classification results. Nevertheless, few studies have benefited from high spatial and temporal resolution data due to the difficulty of accessing reliable, fine-grained and high-quality annotated samples to support their hypotheses. Therefore, we introduce a temporal patch-based dataset of Canadian croplands, enriched with labels retrieved from the Canadian Annual Crop Inventory. The dataset contains 78,536 manually verified high-resolution (10 m/pixel, 640 x 640 m) geo-referenced images from 10 crop classes collected over four crop production years (2017-2020) and five months (June-October). Each instance contains 12 spectral bands, an RGB image, and additional vegetation index bands. Individually, each category contains at least 4,800 images. Moreover, as a benchmark, we provide models and source code that allow a user to predict the crop class using a single image (ResNet, DenseNet, EfficientNet) or a sequence of images (LRCN, 3D-CNN) from the same location. In perspective, we expect this evolving dataset to propel the creation of robust agro-environmental models that can accelerate the comprehension of complex agricultural regions by providing accurate and continuous monitoring of land cover.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube