Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Predicting Heart Disease and Reducing Survey Time Using Machine Learning Algorithms (2306.00023v1)

Published 30 May 2023 in cs.LG, cs.AI, and stat.AP

Abstract: Currently, many researchers and analysts are working toward medical diagnosis enhancement for various diseases. Heart disease is one of the common diseases that can be considered a significant cause of mortality worldwide. Early detection of heart disease significantly helps in reducing the risk of heart failure. Consequently, the Centers for Disease Control and Prevention (CDC) conducts a health-related telephone survey yearly from over 400,000 participants. However, several concerns arise regarding the reliability of the data in predicting heart disease and whether all of the survey questions are strongly related. This study aims to utilize several machine learning techniques, such as support vector machines and logistic regression, to investigate the accuracy of the CDC's heart disease survey in the United States. Furthermore, we use various feature selection methods to identify the most relevant subset of questions that can be utilized to forecast heart conditions. To reach a robust conclusion, we perform stability analysis by randomly sampling the data 300 times. The experimental results show that the survey data can be useful up to 80% in terms of predicting heart disease, which significantly improves the diagnostic process before bloodwork and tests. In addition, the amount of time spent conducting the survey can be reduced by 77% while maintaining the same level of performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: