Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Incorporating Domain Knowledge in Deep Neural Networks for Discrete Choice Models (2306.00016v1)

Published 30 May 2023 in cs.LG, cs.AI, and econ.EM

Abstract: Discrete choice models (DCM) are widely employed in travel demand analysis as a powerful theoretical econometric framework for understanding and predicting choice behaviors. DCMs are formed as random utility models (RUM), with their key advantage of interpretability. However, a core requirement for the estimation of these models is a priori specification of the associated utility functions, making them sensitive to modelers' subjective beliefs. Recently, ML approaches have emerged as a promising avenue for learning unobserved non-linear relationships in DCMs. However, ML models are considered "black box" and may not correspond with expected relationships. This paper proposes a framework that expands the potential of data-driven approaches for DCM by supporting the development of interpretable models that incorporate domain knowledge and prior beliefs through constraints. The proposed framework includes pseudo data samples that represent required relationships and a loss function that measures their fulfillment, along with observed data, for model training. The developed framework aims to improve model interpretability by combining ML's specification flexibility with econometrics and interpretable behavioral analysis. A case study demonstrates the potential of this framework for discrete choice analysis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube