Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Incorporating Domain Knowledge in Deep Neural Networks for Discrete Choice Models (2306.00016v1)

Published 30 May 2023 in cs.LG, cs.AI, and econ.EM

Abstract: Discrete choice models (DCM) are widely employed in travel demand analysis as a powerful theoretical econometric framework for understanding and predicting choice behaviors. DCMs are formed as random utility models (RUM), with their key advantage of interpretability. However, a core requirement for the estimation of these models is a priori specification of the associated utility functions, making them sensitive to modelers' subjective beliefs. Recently, ML approaches have emerged as a promising avenue for learning unobserved non-linear relationships in DCMs. However, ML models are considered "black box" and may not correspond with expected relationships. This paper proposes a framework that expands the potential of data-driven approaches for DCM by supporting the development of interpretable models that incorporate domain knowledge and prior beliefs through constraints. The proposed framework includes pseudo data samples that represent required relationships and a loss function that measures their fulfiLLMent, along with observed data, for model training. The developed framework aims to improve model interpretability by combining ML's specification flexibility with econometrics and interpretable behavioral analysis. A case study demonstrates the potential of this framework for discrete choice analysis.

Citations (1)

Summary

We haven't generated a summary for this paper yet.