Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

TinyissimoYOLO: A Quantized, Low-Memory Footprint, TinyML Object Detection Network for Low Power Microcontrollers (2306.00001v2)

Published 22 May 2023 in cs.CV, cs.AR, and eess.IV

Abstract: This paper introduces a highly flexible, quantized, memory-efficient, and ultra-lightweight object detection network, called TinyissimoYOLO. It aims to enable object detection on microcontrollers in the power domain of milliwatts, with less than 0.5MB memory available for storing convolutional neural network (CNN) weights. The proposed quantized network architecture with 422k parameters, enables real-time object detection on embedded microcontrollers, and it has been evaluated to exploit CNN accelerators. In particular, the proposed network has been deployed on the MAX78000 microcontroller achieving high frame-rate of up to 180fps and an ultra-low energy consumption of only 196{\mu}J per inference with an inference efficiency of more than 106 MAC/Cycle. TinyissimoYOLO can be trained for any multi-object detection. However, considering the small network size, adding object detection classes will increase the size and memory consumption of the network, thus object detection with up to 3 classes is demonstrated. Furthermore, the network is trained using quantization-aware training and deployed with 8-bit quantization on different microcontrollers, such as STM32H7A3, STM32L4R9, Apollo4b and on the MAX78000's CNN accelerator. Performance evaluations are presented in this paper.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com