Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fast-SNN: Fast Spiking Neural Network by Converting Quantized ANN (2305.19868v1)

Published 31 May 2023 in cs.NE

Abstract: Spiking neural networks (SNNs) have shown advantages in computation and energy efficiency over traditional artificial neural networks (ANNs) thanks to their event-driven representations. SNNs also replace weight multiplications in ANNs with additions, which are more energy-efficient and less computationally intensive. However, it remains a challenge to train deep SNNs due to the discrete spike function. A popular approach to circumvent this challenge is ANN-to-SNN conversion. However, due to the quantization error and accumulating error, it often requires lots of time steps (high inference latency) to achieve high performance, which negates SNN's advantages. To this end, this paper proposes Fast-SNN that achieves high performance with low latency. We demonstrate the equivalent mapping between temporal quantization in SNNs and spatial quantization in ANNs, based on which the minimization of the quantization error is transferred to quantized ANN training. With the minimization of the quantization error, we show that the sequential error is the primary cause of the accumulating error, which is addressed by introducing a signed IF neuron model and a layer-wise fine-tuning mechanism. Our method achieves state-of-the-art performance and low latency on various computer vision tasks, including image classification, object detection, and semantic segmentation. Codes are available at: https://github.com/yangfan-hu/Fast-SNN.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub