Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

APPRAISER: DNN Fault Resilience Analysis Employing Approximation Errors (2305.19733v1)

Published 31 May 2023 in cs.LG, cs.AI, and cs.AR

Abstract: Nowadays, the extensive exploitation of Deep Neural Networks (DNNs) in safety-critical applications raises new reliability concerns. In practice, methods for fault injection by emulation in hardware are efficient and widely used to study the resilience of DNN architectures for mitigating reliability issues already at the early design stages. However, the state-of-the-art methods for fault injection by emulation incur a spectrum of time-, design- and control-complexity problems. To overcome these issues, a novel resiliency assessment method called APPRAISER is proposed that applies functional approximation for a non-conventional purpose and employs approximate computing errors for its interest. By adopting this concept in the resiliency assessment domain, APPRAISER provides thousands of times speed-up in the assessment process, while keeping high accuracy of the analysis. In this paper, APPRAISER is validated by comparing it with state-of-the-art approaches for fault injection by emulation in FPGA. By this, the feasibility of the idea is demonstrated, and a new perspective in resiliency evaluation for DNNs is opened.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.