Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The dimensional reduction method for solving a nonlinear inverse heat conduction problem with limited boundary data (2305.19528v1)

Published 31 May 2023 in math.NA and cs.NA

Abstract: The objective of this article is to introduce a novel technique for computing numerical solutions to the nonlinear inverse heat conduction problem. This involves solving nonlinear parabolic equations with Cauchy data provided on one side $\Gamma$ of the boundary of the computational domain $\Omega$. The key step of our proposed method is the truncation of the Fourier series of the solution to the governing equation. The truncation technique enables us to derive a system of 1D ordinary differential equations. Then, we employ the well-known Runge-Kutta method to solve this system, which aids in addressing the nonlinearity and the lack of data on $\partial \Omega \setmunus \Gamma$. This new approach is called the dimensional reduction method. By converting the high-dimensional problem into a 1D problem, we achieve exceptional computational speed. Numerical results are provided to support the effectiveness of our approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube