Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The dimensional reduction method for solving a nonlinear inverse heat conduction problem with limited boundary data (2305.19528v1)

Published 31 May 2023 in math.NA and cs.NA

Abstract: The objective of this article is to introduce a novel technique for computing numerical solutions to the nonlinear inverse heat conduction problem. This involves solving nonlinear parabolic equations with Cauchy data provided on one side $\Gamma$ of the boundary of the computational domain $\Omega$. The key step of our proposed method is the truncation of the Fourier series of the solution to the governing equation. The truncation technique enables us to derive a system of 1D ordinary differential equations. Then, we employ the well-known Runge-Kutta method to solve this system, which aids in addressing the nonlinearity and the lack of data on $\partial \Omega \setmunus \Gamma$. This new approach is called the dimensional reduction method. By converting the high-dimensional problem into a 1D problem, we achieve exceptional computational speed. Numerical results are provided to support the effectiveness of our approach.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.