Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Vision Transformers for Mobile Applications: A Short Survey (2305.19365v1)

Published 30 May 2023 in cs.CV and cs.AI

Abstract: Vision Transformers (ViTs) have demonstrated state-of-the-art performance on many Computer Vision Tasks. Unfortunately, deploying these large-scale ViTs is resource-consuming and impossible for many mobile devices. While most in the community are building for larger and larger ViTs, we ask a completely opposite question: How small can a ViT be within the tradeoffs of accuracy and inference latency that make it suitable for mobile deployment? We look into a few ViTs specifically designed for mobile applications and observe that they modify the transformer's architecture or are built around the combination of CNN and transformer. Recent work has also attempted to create sparse ViT networks and proposed alternatives to the attention module. In this paper, we study these architectures, identify the challenges and analyze what really makes a vision transformer suitable for mobile applications. We aim to serve as a baseline for future research direction and hopefully lay the foundation to choose the exemplary vision transformer architecture for your application running on mobile devices.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube