Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Geometry-aware training of factorized layers in tensor Tucker format (2305.19059v2)

Published 30 May 2023 in cs.LG, cs.NA, math.NA, and stat.ML

Abstract: Reducing parameter redundancies in neural network architectures is crucial for achieving feasible computational and memory requirements during training and inference phases. Given its easy implementation and flexibility, one promising approach is layer factorization, which reshapes weight tensors into a matrix format and parameterizes them as the product of two small rank matrices. However, this approach typically requires an initial full-model warm-up phase, prior knowledge of a feasible rank, and it is sensitive to parameter initialization. In this work, we introduce a novel approach to train the factors of a Tucker decomposition of the weight tensors. Our training proposal proves to be optimal in locally approximating the original unfactorized dynamics independently of the initialization. Furthermore, the rank of each mode is dynamically updated during training. We provide a theoretical analysis of the algorithm, showing convergence, approximation and local descent guarantees. The method's performance is further illustrated through a variety of experiments, showing remarkable training compression rates and comparable or even better performance than the full baseline and alternative layer factorization strategies.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.