Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 46 tok/s Pro
GPT-5 High 43 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 40 tok/s Pro
2000 character limit reached

A Rainbow in Deep Network Black Boxes (2305.18512v3)

Published 29 May 2023 in cs.LG, cs.CV, and eess.SP

Abstract: A central question in deep learning is to understand the functions learned by deep networks. What is their approximation class? Do the learned weights and representations depend on initialization? Previous empirical work has evidenced that kernels defined by network activations are similar across initializations. For shallow networks, this has been theoretically studied with random feature models, but an extension to deep networks has remained elusive. Here, we provide a deep extension of such random feature models, which we call the rainbow model. We prove that rainbow networks define deterministic (hierarchical) kernels in the infinite-width limit. The resulting functions thus belong to a data-dependent RKHS which does not depend on the weight randomness. We also verify numerically our modeling assumptions on deep CNNs trained on image classification tasks, and show that the trained networks approximately satisfy the rainbow hypothesis. In particular, rainbow networks sampled from the corresponding random feature model achieve similar performance as the trained networks. Our results highlight the central role played by the covariances of network weights at each layer, which are observed to be low-rank as a result of feature learning.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 81 likes.

Upgrade to Pro to view all of the tweets about this paper: