Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Role of Noise in the Sample Complexity of Learning Recurrent Neural Networks: Exponential Gaps for Long Sequences (2305.18423v1)

Published 28 May 2023 in stat.ML and cs.LG

Abstract: We consider the class of noisy multi-layered sigmoid recurrent neural networks with $w$ (unbounded) weights for classification of sequences of length $T$, where independent noise distributed according to $\mathcal{N}(0,\sigma2)$ is added to the output of each neuron in the network. Our main result shows that the sample complexity of PAC learning this class can be bounded by $O (w\log(T/\sigma))$. For the non-noisy version of the same class (i.e., $\sigma=0$), we prove a lower bound of $\Omega (wT)$ for the sample complexity. Our results indicate an exponential gap in the dependence of sample complexity on $T$ for noisy versus non-noisy networks. Moreover, given the mild logarithmic dependence of the upper bound on $1/\sigma$, this gap still holds even for numerically negligible values of $\sigma$.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com