Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Training Private Models That Know What They Don't Know (2305.18393v1)

Published 28 May 2023 in cs.LG and cs.CR

Abstract: Training reliable deep learning models which avoid making overconfident but incorrect predictions is a longstanding challenge. This challenge is further exacerbated when learning has to be differentially private: protection provided to sensitive data comes at the price of injecting additional randomness into the learning process. In this work, we conduct a thorough empirical investigation of selective classifiers -- that can abstain when they are unsure -- under a differential privacy constraint. We find that several popular selective prediction approaches are ineffective in a differentially private setting as they increase the risk of privacy leakage. At the same time, we identify that a recent approach that only uses checkpoints produced by an off-the-shelf private learning algorithm stands out as particularly suitable under DP. Further, we show that differential privacy does not just harm utility but also degrades selective classification performance. To analyze this effect across privacy levels, we propose a novel evaluation mechanism which isolate selective prediction performance across model utility levels. Our experimental results show that recovering the performance level attainable by non-private models is possible but comes at a considerable coverage cost as the privacy budget decreases.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.